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Abstract
In this letter, we use the newly available explicit multi-soliton and multi-cuspon
solutions of the Camassa–Holm equation to study the interactions of a soliton
and a cuspon, two cuspons and two solitons. Some interesting phenomena are
found, e.g., a larger soliton can ‘eat up’ a smaller cuspon during the collison
and it is the other way round if the amplitude of the cuspon is larger. It is also
found that a soliton and a cuspon can emerge from an almost zero mass. The
interaction of two cuspons is also investigated in detail for the first time.

PACS numbers: 02.30.Ik, 05.45.Yv, 47.10.+g
Mathematics Subject Classification: 35Q51, 35Q53, 35Q72

1. Introduction

The Camassa–Holm equation

∂tu + 2ω∂xu − ∂x,x,tu + 3u∂xu − 2∂xu∂x,xu − u∂x,x,xu = 0 (1.1)

was proposed in Camassa and Holm (1993) and Camassa et al (1994) as a model equation
for unidirectional nonlinear dispersive waves in a shallow water. Johnson (2002) questioned
the validity of the first derivation of (1.1) given in the paper by Camassa and Holm (1993)
and provided a consistent derivation for (1.1) as a model equation in a shallow water. This
equation has attracted a lot of attention over the past decade due to its interesting mathematical
properties, e.g., it is an integrable equation and admits the peakon solution. In the context of
another valid physical model, Dai (1998a) (see also Dai and Huo 2000) derived the following
model equation for nonlinear dispersive waves in cylindrical hyperelastic rods:

∂tv + 3v∂xv − ∂x,x,t v − γ (2∂xv∂x,xv + v∂x,x,xv) = 0, (1.2)

where γ is a material parameter. In Dai and Huo (2000) the phase plane technique was used
to analyse the travelling wave solutions. A variety of analytical solutions were obtained for γ
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within five different intervals. Constantin and Strauss (2000a) proved that the solitary waves
of this model are orbitally stable for the case of γ � 1; and for the case of γ = 1 they
(Constantin and Strauss 2000b) also gave the proof of the orbital stability of the peakons in
the H 1 norm. These important stability results imply that when two solitons are well apart
(e.g, the case of two-soliton solution for large t), the influence of one soliton on another is
negligible. Recently, Ivanov (2005) has shown that (1.2) is integrable if and only if γ = 1.
Obviously, equation (1.2) is reduced to equation (1.1) for the case of ω = 0 when γ = 1, i.e.,

∂tU + 3U∂xU − ∂x,x,tU − 2∂xU∂x,xU − U∂x,x,xU = 0. (1.3)

We note that one can get the solution of equation (1.3) from the solution of equation (1.1) as
below

U(x, t) = u(x − ωt, t) + ω. (1.4)

Besides admitting the peakon solution, equation (1.1) also has the so-called cuspon solution.
In Ferreira et al (1999), they investigated the interaction of a soliton and a cuspon with the

help of numerical methods for the case of ω = 2, as no explicit analytical expressions were
avaliable at the time. Nevertheless, these authors managed to obtain some analytical results for
the phase shifts after the interaction. Recently, important progress has been made to obtain the
explicit multiple-soliton solutions of the Camassa–Holm equation. Constantin (2001) made
a connection between the spectral problem of the Camassa–Holm equation and that of the
KdV equation. Johnson (2003) implemented Constantin’s scattering approach and obtained
the two-soliton solution. However, Johnson’s approach was difficult to yield multiple-soliton
(say,three-soliton) solution. Parker (2004) managed to obtain the associated bilinear form
of the Camassa–Holm equation and analysed the one soliton (the one-soliton solution was
already previously obtained by Dai 1998b by the phase-plane technique). Although Parker
pointed out that his bilinear form approach could yield the multiple-soliton solution, the results
are still not published. In Li and Zhang (2004) and Li (2005), a different approach associated
with the Darboux transformation was introduced to construct the explicit expressions for the
multiple-soliton solutions. The results are summarized below.

Denote the two fundamental solutions of the KdV spectral problem with a zero potential
as

�i =
{

cosh ξi i is odd,

sinh ξi i is even,

ξi = ki

(
y +

√
ωt

2
(
ki

2 − 1
4ω

)
)

, i = 1, 2, . . . n. (1.5)

Then, the n-soliton solution of the Camassa–Holm equation (1.1) is given by

u(y, t) = ∂t ln

(
f1

f2

)
, (1.6)

f1 = Wx
(
�1,�2, . . . �n, e

y

2
√

ω

)
W(�1,�2, . . . �n)

, f2 = W
(
�1,�2, . . . �n, e

−y

2
√

ω

)
W(�1,�2, . . . �n)

, (1.7)

where W(�1,�2, . . . �n) is the Wronskian and the parameter y is realated to x through

x = ln

(√
f 2

1

f 2
2

)
. (1.8)

This approach can be extended to �1 = sinh ξ1, or �1 = cosh ξ1,�2 = cosh ξ2, etc.
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For the above solutions, even when n = 2, a few cases can arise. In this letter we
shall examine in detail the interactions and an ω-soliton and an ω-cuspon, two ω-solitons and
two ω-cuspons. Our investigation based on the explicit solutions reveals some interesting
phenomena, e.g., when the amplitude of the ω-soliton is larger than that of the ω-cuspon, the
soliton actually ‘eats up’ the cuspon during the interaction process and it is the other way
round if the amplitude of the ω-cuspon is larger.

The main purpose of this letter is to use explicit solution expressions to describe the
interaction processess and to report some phenomena which have not been found by numerical
studies (Camassa and Holm 1994, Ferreira et al 1999).

2. One ω-soliton solution and one ω-cuspon solution

When two solitons or two cuspons are well separated, each of them can be regarded as a single
soliton or a single cuspon. So, in this section we first represent the solutions of an ω-soliton
and an ω-cuspon.

2.1. ω-soliton

In equation (1.5), we take n = 1 and �1 = cosh ξ1. Then, we have

f1 =
exp

(
y

2
√

ω

)
(1 − 2k1

√
w tanh ξ1)

2
√

ω
,

f2 =
exp

( −y

2
√

ω

)
(1 + 2k1

√
ω tanh ξ1)

2
√

ω
,

u(y, t) = ∂t ln

(
f1

f2

)
= 8k1ω

2(
4k1

2ω − 1
)(

4k1
2ω sinh ξ1

2 − cosh ξ1
2
) ,

x = ln

(−f1

f2

)
= ln

(
exp

(
y

2
√

ω

)
(1 − 2k1

√
ω tanh ξ1)

1 + 2k1
√

ω tanh ξ1

)
.

When 2k1
√

ω < 1, y and x are in one-to-one correspondence. We set

k1 =
√

1 − 2ω
c1

2
√

ω
.

Functions u(x, t) and ∂xu(x, t) are continuous functions of x and t and further u(x, t) > 0.
Also, as |x| → ∞, u → 0. The relation between the amplitute h and velocity c1 reads
as h = c1 − 2ω. For this solution u(x, t) contains two parameters: ω and the velocity c1;
and we call this solution u(x, t) as an ω-soliton. In Parker (2004), the author pointed out
that when both ω → 0 and 2k1

√
ω → 1, the solution u(x, t) tends to the peakon solution:

c1 exp(−|x − c1t |). Correspondingly for equation (1.3), U → ω as |x| → ∞. The relation
between the amplitute H and c1 for U reads as H = c1 − ω.

2.2. ω-cuspon

We take n = 1 and �1 = sinh ξ1. Then, we have

f1 =
exp

(
y

2
√

ω

)
(1 − 2k1

√
ω coth ξ1)

2
√

ω
,



L688 Letter to the Editor

f2 =
exp

( −y

2
√

ω

)
(1 + 2k1

√
ω coth ξ1)

2
√

ω
,

u(y, t) = ∂t ln

(
f1

f2

)
= 8k1ω

2(
4k1

2ω − 1
)(

4k1
2ω cosh ξ1

2 − sinh ξ1
2
) ,

x = ln

(
f1

f2

)
= ln

(
exp

(
y

2
√

ω

)
(1 − 2k1

√
ω coth ξ1)

(1 + 2k1
√

ω coth ξ1)

)
.

When 2k1
√

ω > 1, y and x are in one-to-one correspondence. We set

k1 =
√

1 − 2w
c1

2
√

w
.

Function u(x, t) is a continuous function of x and t and further u(x, t) < 0. However, there is
one point at which ∂xu(x, t) tends to ∞. Further, as |x| → ∞, u → 0. The relation between
the amplitute h and velocity c1 reads as h = c1. Also, the solution u(x, t) contains two
parameters: ω and the velocity c1, and we call this solution as an ω-cuspon. Correspondingly
for equation (1.3), when |x| → ∞, U → ω, and the relation between the amplitute H and c1

for U reads as H = c1 + ω.
In the next section, we describe the interactions between solitons and cuspons. We

shall take the value of ω to be very small, so that approximately the results also apply to
equation (1.3).

3. The interaction processes

3.1. The interaction of two ω-solitons

We take n = 2 in equations (1.5)–(1.8) and set k1 =
√

1 − 2ω
c1

/
(2

√
ω), k2 =√

1 − 2ω
c2

/
(2

√
ω). When c2 > c1 > 0, the corresponding solution is the two-soliton solution.

In figure 1, we describe the interaction process of two solitons for seven different times.
Such an interaction is very similar to that of two solitons of the KdV equation, except that the
two solitons of the Camassa–Holm equation are never merged into a single hump when the
collision happens.

3.2. The interaction of two ω-cuspons

We take n = 2 in equations (1.5)–(1.8) and set k1 =
√

1 − 2ω
c1

/
2
√

ω and k2 =
√

1 − 2ω
c2

/
2
√

ω.
When c2 < c1 < 0, the corresponding solution is the two-cuspon solution.

During to the singularities of the two cuspons, their interaction process may be difficult
to be investigated by numerical means. Actually, no work has been done to study in detail the
interaction of two cuspons of the Camassa–Holm equation. Here, with the explicit solutions,
we have no difficulty describing the interaction of two cuspons in detail. Figure 2 shows the
interaction process for seven different times. We can see that the interaction has the character
similar to that of two solitons. However, we note that the two cuspons (i.e., two points where
∂xu → ∞) are always present, before, during and after the collision.

3.3. The interaction of one ω-soliton and one ω-cuspon

We take

W(�1,�2) = W(cosh ξ1, cosh ξ2),
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Figure 1. The interaction of two ω-solitons. The velocities of two solitons are respectively
c1 = 0.4 and c2 = 0.6. From top to bottom, the time t = (−60, −10), (−5, 0), (5, 10), 60.

f1 =
W

(
cosh ξ1, cosh ξ2, exp

(
y

2
√

ω

))
W(cosh ξ1, cosh ξ2)

,

f2 =
W

(
cosh ξ1, cosh ξ2, exp

( −y

2
√

ω

))
W(cosh ξ1, cosh ξ2)

,

u(y, t) = ∂t ln

(
f1

f2

)
, x = ln

(√
f 2

1

f 2
2

)
,

k1 =
√

1 − 2ω
c1

2
√

ω
, k2 =

√
1 − 2ω

c2

2
√

ω
.

If c1 < 0 and c2 > 0 or c1 > 0 and c2 < 0, the corresponding solution represents a combination
of a single ω-soliton and a single ω-cuspon as t → ∞.
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Figure 2. The interaction of two ω-cuspons. The velocities of two cuspons are, respectively,
c1 = −0.4 and c2 = −0.6. From top to bottom, the time t = (−40,−10), (−5, 0), (5, 10), 40.

In figure 3, we have plotted the solution profiles for 11 different times, which describe
the complete interaction process. Initially (at t = −20), the amplitude of the ω-soliton
is h2 = c2 − 2ω = 0.498, which is larger than the amplitude of the ω-cuspon that has the
absolute value h1 = |c1| = 0.4. It can be seen that when the interaction begins both amplitudes
start decreasing. At t = −0.5, the profile becomes one of complete elevation (u > 0 for
all x). So, it is like that the ω-soliton (with a larger amplitude) ‘eats up’ the ω-cuspon (with
a smaller amplitude). We also note that at all times there is always a point where ∂xu → ∞.
This character of a cuspon is never destroyed by the interaction. At t = 20, the ω-soliton and
ω-cuspon are well separated with their original amplitudes.

In figure 4, we represent another case of the interaction of an ω-cuspon and an ω-soliton.
The former has an amplitude of h2 = c2 = −0.6 whose absolute value is larger than the
amplitude of the latter that has the value of h1 = c1 − 2ω = 0.398. When the interaction
begins both amplitudes decrease. At t = −0.6, the ‘larger’ cuspon has ‘eaten up’ the smaller
soliton. After t > 0, the soliton starts emerging again. Eventually at t = 20, the ω-soliton
and ω-cuspon recover their original forms except with some phase shifts.
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Figure 3. The interaction of an ω-soliton and an ω-cuspon for the case of ω = 0.01. The velocities
of the soliton and cuspon are, respectively, c1 = −0.4 and c2 = 0.5. From top to bottom, the time
t = (−20,−5), (−2,−0.5), (−0.1, 0), (0.1, 0.5), (2, 5), 20.

In figure 5, we also describe the case that the interaction of an ω-soliton and an ω-cuspon
with almost equal amplitudes. More precisely, the ω-soliton has an amplitude h2 = c2 −2ω =
0.398 and the ω-cuspon has an amplitude h1 = c1 = −0.46. In this case, it is difficult to
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Figure 4. The interaction of an ω-soliton and an ω-cuspon for the case of ω = 0.01. The velocities
of the soliton and cuspon are, respectively, c1 = 0.4 and c2 = −0.6. From top to bottom, the time
t = (−20,−5), (−2,−0.6), (−0.1, 0), (0.1, 0.6), (2, 5), 20.

distinguish who ‘eats up’ whom. Actually, at t = 0 the ‘mass’
∫ +∞
−∞ u dx is almost equal to

zero. But, still a soliton and a cuspon can emerge as time further evolves.
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Figure 5. The interaction of an ω-soliton and an ω-cuspon for the case of ω = 0.01. The velocities
of the soliton and cuspon are, respectively, c1 = −0.46 and c2 = 0.4. From top to bottom, the
time t = (−20,−5), (−2,−0.6), (−0.1, 0), (0.1, 0.6), (2, 5), 20.

Finally, we point out that the phase shifts after the interactions of two solitons have been
given in Johnson (2003) and Li (2005) and the phase shifts after the interaction of a soliton and
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a cuspon have been given in Ferreira et al (1999). To get the phase shifts after the interactions
among n solitons and m cuspons is a difficult task, and we shall leave this for a future work.
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